Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2023
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2023
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overheating calculation methods, criteria, and indicators in European regulation for residential buildings

Authors: Attia, Shady; Benzidane, Caroline; Rahif, Ramin; Amaripadath, Deepak; Hamdy, Mohamed; Holzer, Peter; Koch, Annekatrin; +12 Authors

Overheating calculation methods, criteria, and indicators in European regulation for residential buildings

Abstract

With the ongoing significance of overheating calculations in the residential building sector, building codes such as the European Energy Performance of Building Directive (EPBD) are essential for harmonizing the indicators and performance thresholds. This paper investigates Europe's overheating calculation methods, indicators, and thresholds and evaluates their ability to address climate change and heat events. e study aims to identify the suitability of existing overheating calculation methods and propose recommendations for the EPBD. The study results provide a cross-sectional overview of twenty-six European countries. The most influential overheating calculation criteria are listed the best approaches are ranked. The paper provides a thorough comparative assessment and recommendations to align current calculations with climate-sensitive metrics. The results suggest a framework and key performance indicators that are comfort-based, multi-zonal, and time-integrated to calculate overheating and modify the EU's next building energy efficiency regulations. The results can help policymakers and building professionals to develop the next overheating calculation framework and approach for the future development of climate-proof and resilient residential buildings.

- (undefined)

Countries
Portugal, United Kingdom
Keywords

690, performance-based, dwellings, EPBD, engineering, energy & fuels, challenges, models, Summer thermal comfort, heatwave, adaptive thermal comfort, Engenharia e Tecnologia::Engenharia Civil, Thermal discomfort, civil, Climate change, Indicators, construction & building technology, UK, Prescriptive, risk, ta212, projections, Heatwave, simulation, indicators, thermal discomfort, prescriptive, climate change, impact, Performance-based

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
  • 2
    views
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM20
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
46
Top 10%
Top 10%
Top 1%
2
Green
bronze