
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sinergym – A virtual testbed for building energy optimization with Reinforcement Learning

Simulation has become a crucial tool for Building Energy Optimization (BEO) as it enables the evaluation of different design and control strategies at a low cost. Machine Learning (ML) algorithms can leverage large-scale simulations to learn optimal control from vast amounts of data without supervision, particularly under the Reinforcement Learning (RL) paradigm. Unfortunately, the lack of open and standardized tools has hindered the widespread application of ML and RL to BEO. To address this issue, this paper presents Sinergym, an open-source Python-based virtual testbed for large-scale building simulation, data collection, continuous control, and experiment monitoring. Sinergym provides a consistent interface for training and running controllers, predefined benchmarks, experiment visualization and replication support, and comprehensive documentation in a ready-to-use software library. This paper 1) highlights the main features of Sinergym in comparison to other existing frameworks, 2) describes its basic usage, and 3) demonstrates its applicability for RL-based BEO through several representative examples. By integrating simulation, data, and control, Sinergym supports the development of intelligent, data-driven applications for more efficient and responsive building operations, aligning with the objectives of digital twin technology.
Computer Science - Machine Learning, J.2, I.2.8, Electrical Engineering and Systems Science - Systems and Control
Computer Science - Machine Learning, J.2, I.2.8, Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
