Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An interpretable data analytics-based energy benchmarking process for supporting retrofit decisions in large residential building stocks

Authors: Marco Savino Piscitelli; Giuseppe Razzano; Giacomo Buscemi; Alfonso Capozzoli;

An interpretable data analytics-based energy benchmarking process for supporting retrofit decisions in large residential building stocks

Abstract

Advanced energy benchmarking in residential buildings, using data-driven modeling, provides a fast, accurate, and systematic approach to assessing energy performance and comparing it with reference standards or targets. This process is essential for identifying opportunities to improve energy efficiency and for shaping effective energy retrofit strategies. However, building professionals often face barriers to adopting these tools, mainly due to the complexity and limited interpretability of data-driven models, which can negatively affect decision-making. In order to contribute in addressing these issues, this study combines data-driven modeling with Explainable Artificial Intelligence (XAI) techniques to advance energy benchmarking analysis in residential buildings and enhance their usability by also non-expert users. The proposed process focuses on estimating primary energy demand for space heating and domestic hot water in residential building units, extracting knowledge from about 49,000 Energy Performance Certificates (EPCs) issued in the Piedmont Region, Italy. The effectiveness of five machine learning algorithms is assessed to select the most suitable estimation model. Then to ensure the trustworthiness of the selected model, a XAI layer is implemented to identify and remove input variable domain regions that demonstrated to be critical for the robustness of the inference mechanism learnt in the training phase. Moreover, the study assesses the model capability to evaluate building energy performance, examining both the current state and potential scenarios for energy retrofitting. A second XAI layer is then introduced to provide local explanations for model estimations of both pre- and post-retrofit conditions of a building. The final aim is to enable an external benchmarking analysis, by extracting from the analysed EPCs reference groups of similar buildings, that facilitate a performance comparison for the investigated retrofit scenarios. This energy benchmarking process promotes transparent and informed decision-making, aiming to instill confidence in final users when leveraging data-driven models for energy planning in the building sector.

Country
Italy
Related Organizations
Keywords

Building energy benchmarking; Clustering analysis; Data analytics; Energy performance certificates; Explainable artificial intelligence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid
Related to Research communities