Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2025
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2025
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A scalable approach for real-world implementation of deep reinforcement learning controllers in buildings based on online transfer learning: The HiLo case study

Authors: Davide Coraci; Alberto Silvestri; Giuseppe Razzano; Davide Fop; Silvio Brandi; Esther Borkowski; Tianzhen Hong; +2 Authors

A scalable approach for real-world implementation of deep reinforcement learning controllers in buildings based on online transfer learning: The HiLo case study

Abstract

In recent years, Transfer Learning (TL) has emerged as a promising solution to scale Deep Reinforcement Learning (DRL) controllers for building energy management, addressing challenges related to DRL implementation as high data requirements and reliance on surrogate models. Moreover, most TL applications are limited to simulations, not revealing their real performance in actual buildings. This paper explores the implementation of an online TL methodology combining imitation learning and fine-tuning to transfer a DRL controller between two real office environments. Pre-trained in simulation using a calibrated digital twin, the DRL controller reduces energy consumption and improves indoor temperature control when managing the operation of a Thermally Activated Building System in one of the two offices both in simulation and in the real field. Afterwards, the DRL controller is transferred to the other office following the online TL methodology. The proposed approach outperforms a DRL controller implemented without pre-training, and Rule-Based and Proportional-Integral controllers, achieving energy savings between 6 and 40% and improving indoor temperature control between 30 and 50%. These findings underscore the efficacy of the online TL methodology as a viable solution to enhance the scalability of DRL controllers in real buildings.

Energy and Buildings, 329

ISSN:0378-7788

ISSN:1872-6178

Countries
Italy, Denmark, Switzerland, United States
Keywords

Real implementation, Deep reinforcement learning, Building & Construction, Built environment and design, Building HVAC control; Deep reinforcement learning; Energy efficiency; Real implementation; Transfer learning, Transfer learning; Real implementation; Deep reinforcement learning; Building HVAC control; Energy efficiency, Transfer learning, Engineering, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Energy efficiency, Building HVAC control, Built Environment and Design, Clinical Research, Architecture

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research