Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and Buildingsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and Buildings
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Liquid sorption storage for high solar fraction heat supply in residential buildings under different climatic conditions

Authors: Robert Weber; Benjamin Fumey; Luca Baldini;

Liquid sorption storage for high solar fraction heat supply in residential buildings under different climatic conditions

Abstract

Thermochemical energy storage is an attractive option for seasonal thermal energy storage, particularly in building applications. However, several research gaps in the field of sorption storage systems such as restricted focus on specific reactor concepts or sorption couples or lack of systematic performance studies hinder their practical implementation. This study addresses these gaps by evaluating the performance and cost-effectiveness of a solar thermal space heating system integrated with liquid sorption storage across various building types (single and multi-family homes with different envelope qualities) and climates (Zurich, Switzerland; Harbin, China; Helsinki, Finland). The study systematically investigates the impact of different sizes of individual system components (number of ground heat exchangers, solar collector area, sorption reactor capacity, size and distribution of thermal buffers) on the overall system performance using a previously presented greybox sorption reactor model based on a lab-scale prototype. The simulation results demonstrate that high solar fractions above 80 % can be achieved with long-term sorption storage. To reach this, substantial storage volumes of around 0.8––1 m3 per m2 of solar collector area are needed for the multi-family home cases in Zurich climate despite the increased volumetric energy density of sorption storage when compared to classical water storage. This emphasizes the significance of building envelope quality, available roof area, and careful system component sizing for enhancing solar fractions and cost-effective renewable heat generation. The findings provide valuable insights into optimizing sorption storage systems, fostering the practical implementation of renewable energy solutions for space heating in buildings.

Highlights: • Building integrated sorption storage combined with solar thermal collectors. • High solar fractions above 80% can be achieved. • Dynamic building simulations for optimal component sizing and system performance. • Simulations are based on a measured laboratory prototype.

Keywords

Renewable energy, Solar thermal, Seasonal energy storage, Building integration, Liquid sorption storage, High solar fraction, District heating and cooling, 621.04: Energietechnik, Building scale system design, Thermochemical network, Long-term thermal energy storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities
Energy Research