
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling and evaluation of cooling capacity of earth–air–pipe systems

Abstract Earth–air–pipe systems can be used to reduce the cooling load of buildings in summer. A transient and implicit model based on numerical heat transfer and computational fluid dynamics was developed to predict the thermal performance and cooling capacity of earth–air–pipe systems. Superposition technology is used in the model, incorporating the natural ground temperature field and the turbulent air flow inside the buried pipe. The model developed is validated against experimental investigations on an experimental set-up in Southern China. Good agreement between simulated results and experimental data is obtained. The model is then implemented on the CFD (Computational Fluid Dynamics platform), PHOENICS, to evaluate the effects of the operating parameters (i.e. the pipe length, radius, depth and air flow rate) on the thermal performance and cooling capacity of earth–air–pipe systems. A daily cooling capacity up to 74.6 kW h can be obtained from an earth–air–pipe system installed in that region.
- South China University of Technology China (People's Republic of)
- South China University of Technology China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).134 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
