Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A metal hydride–polymer composite for hydrogen storage applications

Authors: Enrico Imperi; Aurelio La Barbera; Franco Padella; Luciano Pilloni; Marzia Pentimalli;

A metal hydride–polymer composite for hydrogen storage applications

Abstract

Abstract To address the issue of the breakdown into fine powders that occurs in the practical use of metal hydrides, the possibility of using a polymeric material as a matrix that contains the active metal particles was experimentally assessed. A ball milling approach in the tumbling mode was used to develop a metal hydride–polymer composite with a high metal to polymer weight ratio. The alloy powder was blended with the polymer and a coating of the metal particles was obtained. The composite was consolidated by hot pressing and the pellets were characterized in terms of their hydriding–dehydriding properties. The materials did not show significant losses in either loading capacity or kinetic properties. The polymeric matrix resulted as being stable under hydrogen cycling. Further, from SEM observation it was confirmed that the metal powders remained embedded in the polymeric matrix even after a number of cycles and that the overall dimensional integrity was retained.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research