Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel aggregated DFIG wind farm model using mechanical torque compensating factor

Authors: Chowdhury, M. A.; Shen, W. X.; Hosseinzadeh, N.; Pota, H. R.;

A novel aggregated DFIG wind farm model using mechanical torque compensating factor

Abstract

Abstract A novel aggregated model for wind farms consisting of wind turbines equipped with doubly-fed induction generators (DFIGs) is proposed in this paper. In the proposed model, a mechanical torque compensating factor (MTCF) is integrated into a full aggregated wind farm model to deal with the nonlinearity of wind turbines in the partial load region and to make it behave as closely as possible to a complete model of the wind farm. The MTCF is initially constructed to approximate a Gaussian function by a fuzzy logic method and optimized on a trial and error basis to achieve less than 10% discrepancy between the proposed aggregated model and the complete model. Then, a large scale offshore wind farm comprising of 72 DFIG wind turbines is used to verify the effectiveness of the proposed aggregated model. The simulation results show that the proposed aggregated model approximates active power (Pe) and reactive power (Qe) at the point of common coupling more accurately than the full aggregated model by 8.7% and 12.5%, respectively, during normal operation while showing similar level of accuracy during grid disturbance. Computational time of the proposed aggregated model is slightly higher than that of the full aggregated model but much faster than the complete model by 90.3% during normal operation and 87% during grid disturbance.

Country
Australia
Keywords

551

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%