Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detailed analysis for the cooling performance enhancement of a heat source under a thick plate

Authors: Mohammad Reza Salimpour; M.R. Hajmohammadi; M. Saber; Antonio Campo;

Detailed analysis for the cooling performance enhancement of a heat source under a thick plate

Abstract

Abstract Maintaining the peak temperature of a heat source under an allowable level has always been a major concern for engineers engaged in the design of cooling systems for electronic equipment. The primary goal of this paper is to examine the advantages and/or disadvantages of placing a conductive thick plate as a heat transfer interface between a heat source and a cold flowing fluid. In such arrangement, the heat source is cooled under the thick plate instead of being cooled in direct contact with the cooling fluid. It is demonstrated that the thick plate can significantly improve the heat transfer between the heat source and the cooling fluid by way of conducting the heat current in an optimal manner. The two most attractive advantages of this method are that no additional pumping power and no extra heat transfer surface area, that is quite different from fins (extended surfaces). Unlike related archival papers in the literature, the present paper allows open spaces toward optimization. The objective is to minimize the maximum temperature, the ‘hot spot’. Detailed analytical expressions are presented and a numerical analysis is carried out on the conservation equations based on the SIMPLEC algorithm. It is categorically proved that there exists an optimal thickness of the thick plate, which minimizes the peak temperature. Also, it is shown that the efficiency of the optimized plate on minimizing the target peak temperature depends upon the Reynolds number of the fluid flow and the material thermal conductivity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 1%
bronze