
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect


Wen-Long Cheng
Abstract A new kind of shape-stabilized phase change materials (PCMs) with positive temperature coefficient (PTC) effect was prepared in this paper. The materials were prepared by adding graphite powder (GP) to the paraffin/low density polyethylene (LDPE) composite and the PTC characteristic was found by adjusting the component ratio of the material. Then the physical structures and thermal properties of the materials were investigated and the effect of various GP mass fractions and paraffin/LDPE mass proportions on the PTC behavior of the materials was studied experimentally. The results showed that the switching temperature of the materials was about 25 °C (room temperature) which approached to the first phase change temperature of paraffin dispersed in the materials. The PTC behavior of the materials was the best when the GP mass fraction and the mass proportion of LDPE/paraffin were 40 wt% and 30:70, respectively. Furthermore, the negative temperature coefficient (NTC) effect of the materials could be eliminated effectively with heat treatment. This new kind of materials is different from the former PTC materials which the switching temperatures focus on high temperature ranges. It makes up for the defect of previous materials that the switching temperatures only range in high temperature rather than room temperature and provides a potential means for the thermal control of the electronic devices or other room temperature thermal control applications.
- University of Science and Technology of China China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
