
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal characteristics and kinetics of refining and chemicals wastewater, lignite and their blends during combustion

Abstract Co-combustion characteristics of refining and chemicals wastewater solid (RS) and Huolinhe lignite (HL) were studied through thermogravimetric analysis (TGA). The combustion behaviors of the blends at various RS to HL ratios were compared with those of the individual samples. Co-combustion experiments showed that the combustion performance of the blends would be improved with the percentage of RS rising. The interactions between RS and HL during the co-combustion could be divided into four phases, and there were no interactions below 120 °C (PH 1) and beyond 700 °C (PH 4), inhibitive effects at the temperature range of 120–700 °C (PH 2 and PH 3). The results of SEM and XRD indicated that the sintering and fusion degree of residues after combustion became more severe with the percentage of RS increasing. The iso-conversional methods, Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO), were used for the kinetic analysis of the combustion process. The results showed that the activation energy of RS was higher than that of HL, and the minimum value was obtained at 75HL/25RS.
- Dalian Polytechnic University China (People's Republic of)
- Dalian Polytechnic University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
