Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery

Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;

Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery

Abstract

Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%