
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation

Abstract This work presents the development and validation of computational fluid dynamics (CFD) model of 500 W gamma-type Stirling engine prototype to highlight the effects posed by phase angle and dead volume variations on engine performance. The model is based on a realistic Local Thermal Non-Equilibrium (LTNE) approach for porous domains in the engine (cooler and regenerator). The simulation results showed an acceptable degree of accuracy of 9% and 5%, respectively when comparing with experimental results in predicting the indicated and cooling powers at different heating temperatures. It is found that the maximum indicated power is achieved at a phase angle of 105° rather than at the common phase angle of 90°. The dead volume (connecting pipe) is observed to pose negative effects on engine indicated power and therefore, an optimum value of pipe diameter exists.
- University of Birmingham United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
