Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-term performance potential of concentrated photovoltaic (CPV) systems

Authors: Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon;

Long-term performance potential of concentrated photovoltaic (CPV) systems

Abstract

Abstract Owing to the diverse photovoltaic (PV) systems’ design and technology, as well as the dynamic nature of insolation data received on the aperture surfaces, the instantaneous output from a PV system fluctuates greatly. For accurate performance estimation of a large PV field, the long term performance as electrical output is a more rational approach over the conventional testing methods, such as at Standard Testing Conditions (STC) and at the Nominal Operating Cell Temperature (NOCT) available hitherto. In this paper, the long-term performances of concentrated PVs (Cassegrain reflectors and Fresnel lens) with 2-axes tracking and a variety of PV systems, namely the stationary flat-plate PV (mono-crystalline, poly-crystalline and thin-films CIS types), is presented over a period of one year for the merit comparison of system design, under the tropical weather conditions of Singapore. From the measured field performances, the total energy output of 240.2 kW h/m 2 /year is recorded for CPV operation in Singapore, which is nearly two folds higher than the stationary PV panels.

Country
Saudi Arabia
Keywords

Concentrated photovoltaic, CPV, MJC, Long term performance, Electrical rating, Solar tracker

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%