Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy analysis of a particle suspension solar combined cycle power plant

Authors: Qian Kang; Raf Dewil; Jan Degrève; Jan Baeyens; Huili Zhang;

Energy analysis of a particle suspension solar combined cycle power plant

Abstract

Abstract The key to achieve an economically more attractive concentrated solar power plant is to work at higher operating temperatures, allowing both higher power conversion efficiencies resulting in a smaller heliostat field for a given energy output, and higher temperature ranges in the storage tanks, with increased energy storage density and smaller size, hence less expensive. This fostered the development of using particle suspensions as heat transfer media. This paper presents a theoretical framework for the energy analysis of a particle-in-tube solar power plant, hybridized, with topping air-Brayton cycle turbine, and bottoming steam block. From studying the effects of essential design parameters on the energy efficiency, the heat transfer efficiency of the turbine air preheater is of paramount importance to increase the solar contribution within the hybrid concept, while the energy efficiency moreover increases by an optimum air-Brayton cycle turbine operation (mostly through the pressure ratio, less by the operating temperature). The overall efficiency of the concept varies from about 40% when using combined low and high pressure Brayton cycle turbines only, to over 48% in a fully combined air-steam concept. Energy efficiency findings are in agreement with the literature data.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 1%
Green
bronze