Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Conversion and Management
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cranfield CERES
Article . 2018
License: CC BY NC ND
Data sources: Cranfield CERES
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient planning of energy production and maintenance of large-scale combined heat and power plants

Authors: Georgios M. Kopanos; Oluwatosin C. Murele; Javier Silvente; Nurkhat Zhakiyev; Yerbol Akhmetbekov; Damir Tutkushev;

Efficient planning of energy production and maintenance of large-scale combined heat and power plants

Abstract

Abstract In this study, an efficient optimization framework is presented for the simultaneous planning of energy production and maintenance in combined heat and power plants, and applied in the largest coal-fired cogeneration plant of Kazakhstan. In brief, the proposed optimization model considers: (i) unit commitment constraints for boilers and turbines; (ii) minimum and maximum runtimes as well as minimum idle times for boilers and turbines; (iii) bounds on the operating levels for boilers and turbines within desired operating regions; (iv) extreme operating regions for turbines; (v) energy balances for turbines; (vi) total electricity and heat balances for satisfying the corresponding demands for electricity and heat (for each heat network); and (vii) maintenance tasks for units that must occur within given flexible time-windows. The minimization of the annual total cost of the cogeneration plant constitutes the optimization goal here, and consists of startup and shutdown costs, fixed operating and fuel costs, maintenance costs, and penalties for deviation from heat and electricity demands, and penalties for turbines for operating outside the desired operating regions. An extensive data analysis of historical data has been performed to extract the necessary input data. In comparison to the implemented industrial solution that follows a predefined maintenance policy, the solutions derived by the proposed approach achieve reductions in annual total cost more than 21% and completely avoid turbines operation outside their desired operating regions. Our solutions report substantial reductions in startup/shutdown, fuel and fixed operating costs (about 85%, 15%, and 13%, respectively). The comparative case study clearly demonstrates that the proposed approach is an effective means for generating optimal energy production and maintenance plans, enhancing significantly the resource and energy efficiency of the plant. Importantly, the proposed optimization framework could be readily applied to other cogeneration plants that have a similar plant structure.

Country
United Kingdom
Keywords

690, Optimization, Maintenance, Energy planning, Combined heat and power, Energy efficiency, Cogeneration

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
Green
hybrid