Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction

Authors: Zhuo Meng; Yu Jie Chen; Yize Sun;

An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction

Abstract

Abstract Accurate simulation of photovoltaic characteristics is now a mandatory obligation before validating an experiment; hence, accurate model and parameters of solar cells are indispensable. This paper presents an improved explicit double-diode model based on the Lambert W function (EDDM-LW), and then compares the fitness and parameter extraction performance. By defining two new parameters (κ and τ) to separate the exponential function in double-diode model (DDM) and using the Lambert W function, the explicit expression for I-V characteristics is proposed. In contrast to exiting works, the new parameters can readily be computed by the electrical characteristics of the standard test condition without an implicit characteristic. To verify the accuracy of the proposed model, the fitness difference is first investigated with a solar cell and three different types of solar modules. The results indicate that under the same parameter values, EDDM-LW achieves the lowest root mean square error value and exhibits better fitness in representing the I-V characteristics. In addition, the optimal parameters are extracted by an improved teaching-learning-based optimization algorithm. The experimental results show that the optimal parameter values extracted from EDDM-LW are more accurate than those extracted from DDM. Based on these observations, EDDM-LW can be deemed a useful and practical model for the simulation, evaluation, and optimization of the photovoltaic system.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%