
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancing the performance of energy recovery ventilators

Abstract Thermal performance enhancement of membrane based energy recovery ventilators (ERV) under turbulent flow conditions is investigated utilizing the computational fluid dynamics (CFD) approach. The standard k-e model was adopted with the enhanced wall treatment option to simulate conjugate heat and mass transfer across the membrane. A user defined function was developed and incorporated into FLUENT to simulate the heat and mass transfer processes across a variable resistance 60 gsm membrane. A mesh sensitivity analysis was conducted and the developed CFD model was validated against an in-house experimental data. The performance of the investigated ERV was tested under different number of: flow channels, flow configurations, weather conditions and air flowrates. Results have shown that face velocity is more significant than flow separator in affecting the thermal performance of the investigated ERVs with a ratio of almost 5 to 1. Furthermore, the layout of the quasi-counter flow might present a preferable overall option over the L-Shape hybrid flow option. The final decision would be dependent on the HVAC system in-use and the higher priority between pressure drop, thermal energy recovered, manufacturability and/or installation.
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi Petronas Malaysia
- German Jordanian University Jordan
- German Jordanian University Jordan
- Universiti Teknologi MARA Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
