Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Preparation of furfural from Eucalyptus by the MIBK/H2O pretreatment with biphasic system and enzymatic hydrolysis of the resulting solid fraction

Authors: Shaolong Sun; Xuefei Cao; Huiling Li; Xue Chen; Jianing Tang; Shaoni Sun;

Preparation of furfural from Eucalyptus by the MIBK/H2O pretreatment with biphasic system and enzymatic hydrolysis of the resulting solid fraction

Abstract

Abstract Forest wood biomass can be a sustainable and cost-effective feedstock for the biorefinery industries, but the rigid and compact structure of plant cell is a major barrier for production of clean energy and biochemical. In this case, the MIBK/H2O pretreatment with biphasic system was applied to treat Eucalyptus and then systematically evaluated pretreatment conditions (e.g., MIBK/H2O ratio, reaction temperature and time, NaCl concentration, and HCl dosage) on the effect of furfural yield. The resulting solid fraction obtained from the optimum pretreatment condition for furfural yield was to produce fermentable glucose by enzymatic hydrolysis. Study on enzymatic hydrolysis of the raw material and resulting solid fraction obtained by single aqueous system was also contrastively investigated. The furfural yield was 65.9% and the recovery of residue was 46.9% under an optimal reaction condition (VMIBK:VH2O = 5:5, 150 °C, 60 min, 0.3 M HCl). Meanwhile, the yield of glucose of cellulose was improved after the pretreatments with different systems and a maximum value was up to 60.2% by the MIBK/H2O pretreatment. The effective fermentable glucose production was mainly affected by the significant removal of hemicelluloses, change of CrI, and destruction of surface morphology of Eucalyptus. The MIBK/H2O pretreatment can be considered as a potential approach for efficient conversion of Eucalyptus to clean energy and biochemicals.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%