Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using energy balance method to study the thermal behavior of PV panels under time-varying field conditions

Authors: Shahzada Pamir Aly; Said Ahzi; Nicolas Barth; Amir Abdallah;

Using energy balance method to study the thermal behavior of PV panels under time-varying field conditions

Abstract

Abstract A precise estimate of PV panels temperature is crucial for accurately assessing their electrical performance. Therefore, in this study, one of the main aims has been to significantly improve the prediction accuracy of the PV cell temperature, by using realistic boundary conditions. Unlike previous thermal models in the literature, which usually focus on its mere application, a detailed step by step development and numerical implementation of the complete model has also been provided in great details in this work. The developed model is transient, so it can fully simulate the thermal performance of any PV panel under time-varying field conditions. Once the model is defined for a specific PV panel, the only external inputs it needs are the total incident solar irradiation, wind speed and the ambient temperature. The model has been adequately validated through PV panel’s datasheet provided information, literature data and against a versatile set of experimental data under various weather conditions. After thorough validations, the developed model was compared to various other widely used empirical, analytical and numerical thermal models from the literature. The comparison shows that by using realistic boundary conditions, the developed thermal model has far better prediction accuracy than other models from the literature. The methodology presented in this study is completely generic. That is, though it has been implemented and validated here for a silicon-based PV module the approach may be used to model any free-standing plane PV surface, with appropriate modifications to layer thicknesses and material properties. A range of weather conditions may also be accommodated.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 10%