
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices

Abstract In this work, a novel biporous spiral woven mesh wick is developed to enhance the thermal performance of an ultra-thin flattened heat pipe for cooling high heat flux electronic devices. The biporous wick with different sized pores is hybrid woven using 0.05 and 0.04 mm diameter copper wires in every strand. Three different structures are designed to study the effect of the characteristic parameters of the wick on the thermal performance of the ultra-thin flattened heat pipe. The working fluid flow characteristics of the wick are analyzed theoretically. The capillary rate-of-rise experiment with deionized water using the infrared camera method is carried out to characterize the capillary performance of the wick. The thermal performance of the ultra-thin flattened heat pipe is experimentally investigated. The results indicate that the biporous wick combines the advantages of high permeability due to the large pores and large capillary force due to the small pores. The optimal biporous wick has 22% fewer copper wires than the monoporous wick, but the maximum heat transport capacity of the ultra-thin flattened heat pipe is able to approach 24 W, which realizes the demands of both low production cost and high thermal performance using the biporous wick.
- South China University of Technology China (People's Republic of)
- South China University of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).146 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
