Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ardahan University I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS

Authors: Wuming Xie; Haiming Cai; Fatih Evrendilek; Fatih Evrendilek; Jiahong Kuo; Musa Buyukada; Jingyong Liu;

Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS

Abstract

Abstract The present study experimentally quantified the pyrolysis behaviors of waste tea (WT) as a function of four heating rates using thermogravimetric-Fourier transform infrared spectrometry and pyrolysis-gas chromatography-mass spectrometry analyses. The maximum weight loss of WT (66.79%) occurred at the main stage of devolatilization between 187.0 and 536.5 °C. The average activation energy estimates of three sub-stages of devolatilization were slightly higher (161.81, 193.19 and 224.99 kJ/mol, respectively) by the Flynn-Wall-Ozawa than Kissinger-Akahira-Sunose method. Kinetic reaction mechanisms predicted using the master-plots were f (α) = (3/2)(1 − α)2/3[1 − (1 − α)1/3]−1, f (α) = (1 − α)2, and f (α) = (1 − α)2.5 for the three sub-stages, respectively. The prominent volatiles of the WT pyrolysis were CO2 > C O > phenol > CH4 > C O > NH3 > H2O > CO. A total of 33 organic compounds were identified including alkene, acid, benzene, furan, ketone, phenol, nitride, alcohol, aldehyde, alkyl, and ester. This study provides a theoretical and practical guideline to meeting the engineering challenges of introducing WT residues in the bioenergy sector.

Country
Turkey
Keywords

Kinetic, Waste Tea, TG-FTIR, Py-GC/MS, Master-plots, Pyrolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    210
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
210
Top 0.1%
Top 10%
Top 0.1%
Green