

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Collaborative swarm intelligence to estimate PV parameters

handle: 10400.6/7051
Abstract To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other well-established MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
- University of Beira Interior Portugal
- Instituto de Telecomunicações Portugal
Collaborative swarm intelligence, Double-diode model, Parameter estimation, Single-diode model, Hybrid metaheuristic
Collaborative swarm intelligence, Double-diode model, Parameter estimation, Single-diode model, Hybrid metaheuristic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 34 download downloads 18 - 34views18downloads
Data source Views Downloads uBibliorum 17 9 <intR>²Dok 17 9


