Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A magnetically-activated thermal switch without moving parts

Authors: Cátia Rodrigues; Daniel Silva; La Salete Martins; Madalena M. Dias; João Ventura; João P. Araújo; Alberto M. Pereira; +1 Authors

A magnetically-activated thermal switch without moving parts

Abstract

Abstract With the ever increasing power dissipation in electrical devices, new thermal management solutions are in high demand to maintain an optimal operating temperature and efficient performance. In particular, recently developed magnetically-activated thermal switches (MATSs) provide an alternative to existing devices, using the magnetic and thermal properties of superparamagnetic nanofluids to dissipate heat in a controlled manner. However, the presence of moving parts is a major drawback in these systems that must still be addressed. Herein, we present a compact and automatized MATS composed by an encapsulated superparamagnetic nanofluid and an electromagnet allowing to activate the MATS without any moving part. We investigate the effect of different temperature gradients ( 10 , 26 and 40 °C) and powers applied to the coil (6.5, 15, 25 and 39 W) on the performance of this novel MATS. The results show that the highest ( 44.4 % ) and fastest ( 0.6 °C/s) temperature variation occur for the highest studied temperature gradient. On the other hand, with increasing power, there is also an increase in the efficiency of the heat exchange process between the two surfaces. These results remove one of the main barriers preventing the actual application of magnetic thermal switches and opens new venues for the design of efficient thermal management devices.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%