Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy analysis of a 10 kW-class power-to-gas system based on a solid oxide electrolyzer (SOE)

Authors: Jakub Kupecki; Konrad Motylinski; Stanisław Jagielski; Michal Wierzbicki; Jack Brouwer; Yevgeniy Naumovich; Marek Skrzypkiewicz;

Energy analysis of a 10 kW-class power-to-gas system based on a solid oxide electrolyzer (SOE)

Abstract

Abstract This article presents a conceptual power-to-gas system based on a high temperature electrolysis unit. The solid oxide electrolyzer (SOE) delivers highly efficient conversion of intermittent electricity from wind and solar into hydrogen, which can then be directly injected into the gas grid or used to synthesize methane in a Sabatier reactor. Due to the unpredictable character of these sources, the grid experiences imbalances, which destabilize the energy system. The solution, in the form of a high temperature electrolyzer, mitigates the problem by coupling the electric and gas grids. The advantages of solid oxide electrolysis over conventional electrolyzers are as follows: (i) SOEC offers outstanding efficiency, exceeding 70–80%, (ii) no noble metals are needed for catalytic reactions – the ceramic materials of electrodes and the high temperature substitute noble metal loading, (iii) SOEC mode can be switched to SOFC and the interchange supports the unique self-healing of the cells, (iv) modular design makes it easy to scale up the system based on the SOEC stack, (v) absence of any liquid electrolyte that has to be replaced on a regular basis. The 10 kW-class power-to-gas system is presented and the efficiency of the system assessed and discussed from an energy point of view. Accepting the current assumptions related to the performance of cells making up the electrolysis unit, the system can achieve efficiency in excess of 74%. The modeling approach is given and the performance map of the system is analyzed with respect to the variation of voltage and steam utilization in the electrolyzer.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 1%