
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microwave-assisted sustainable co-digestion of sewage sludge and rapeseed cakes

Abstract The technological concept ensuring highly efficient co-digestion of by-products from the production of biodiesel and sewage sludge was examined. Rapeseed cakes (RC) 1–5% addition to waste activated sludge (WAS) 95–99% in digesters, positively influenced the degree of biodegradation of organic matter and the quantity and quality of the biogas produced. Under the optimal conditions (HRT = 20–22 days), the co-digestion mixtures (WAS + microwave disintegration + RC) generated double the amount of biogas, containing approximately 10–12% more CH4, than the samples which had the sewage sludge only. Under these conditions, the biogas yield increased by approximately 48–82% depending on the co-substrate used and was further improved via the introduction of microwave pre-treatment. After testing at the pilot scale, this method could be considered as a sustainable alternative to conventional methods for WAS and RC treatment.
- Palacký University, Olomouc Czech Republic
- University of Bielsko-Biała Poland
- Technical University of Liberec Czech Republic
- Regional Centre of Advanced Technologies and Materials Czech Republic
- University of Bielsko-Biała Poland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
