Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2020
Data sources: IRIS Cnr
CNR ExploRA
Article . 2020
Data sources: CNR ExploRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Grid interaction and environmental impact of a net zero energy building

Authors: Tumminia G; Guarino F; Longo S; Aloisio D; Cellura S; Sergi F; Brunaccini G; +2 Authors

Grid interaction and environmental impact of a net zero energy building

Abstract

The concept of Net Zero Energy Building (NZEB), as a grid-connected building that generates as much energy as it uses over a given period, has been developing through policies and research agendas during the last decade as a contribution towards the decarbonization of the building sector. However, since the most applicable and widely used renewable energy supply options are non-programmable, the large-scale NZEBs diffusion into the existing power grids can seriously affect their stability having a relapse on operation costs and environmental impacts. In this context, the study aims at performing the design of the energy systems to be used in the case-study through a wide numbers of point of views, including the grid interaction, global warming potential, and different design alternatives such as using fuel cells and renewable energy generation systems and drawing lessons learned to be saved for similar buildings. A novel approach for developing for NZEBs, combining load match and grid interaction indicators with an environmental impact indicator, is proposed. The proposed design approach allows for the quantification of the power grid interaction and environmental impact (in terms of Global Warming Potential) aiming to find trade-offs between the opposing tendencies of building energy performances and the need to limit the embodied carbon within building envelope and systems. The design approach has been used to investigate the performances of a NZEB prototype with the aim to explore the effectiveness of the solution sets used in the current design (only Photovoltaic system) and plan different solutions (batteries and fuel cells system) for the future ones. For the base case, even though the overall PV energy generation (8069 kWh) in a year surpasses the electricity consumption (5290 kWh), on a yearly base only the 29% of the PV generation is used on-site. Hence, the assessed indicators show clearly how installing a PV system merely able to cover the energy uses on a yearly net base (or even slightly oversized) will have stress implications on the power grid. On the other hand, the use of batteries at the building scale largely decreases the reliance on power grid when not programmable renewable sources are present. Moreover, if coupled to the right size of the on-site generation systems, the storage system could increases the environmental benefits arising from the renewable energy technologies (the GHG emission reaches its minimum value of 0.92·10 kg CO/year, with a reduction of the 50.4% if compared to the base case) for a storage capacity of 20 kWh and a PV system nominal power of 4.56 kW). Fuel cells guarantee a good load match at high energy efficiency, furthermore, a high installed power of fuel cells is not required to obtain high load cover factor values. On the other hand, since the specific CO emission per unit of energy of the fuel cells are high, the CO emissions are always greater than those of the base case if the system is equipped with a fuel cell system. Therefore, future research will have to focus on the eco-design of fuel cells with to reduce environmental impacts of these systems in a life cycle perspective.

Country
Italy
Keywords

Renewable energy, Energy storage, Net Zero Energy Buildings, Energy storage; Fuel cells; Grid interaction; Load matching; Net Zero Energy Buildings; Renewable energy, Grid interaction, Load matching, Fuel cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 1%
Top 10%
Top 1%