Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Multi-effect distillation plants for small-scale seawater desalination: thermodynamic and economic improvement

Authors: orcid Angelica Liponi;
Angelica Liponi
ORCID
Harvested from ORCID Public Data File

Angelica Liponi in OpenAIRE
Christoph Wieland; orcid Andrea Baccioli;
Andrea Baccioli
ORCID
Harvested from ORCID Public Data File

Andrea Baccioli in OpenAIRE

Multi-effect distillation plants for small-scale seawater desalination: thermodynamic and economic improvement

Abstract

Abstract The growing global demand for fresh water coupled to the increasing interest in renewable energies and waste heat recovery has resulted in flourishing attention to the multi-effect distillation process for seawater desalination. The low operating temperature makes this technology attractive in the case of low temperature heat sources such as geothermal, solar or waste heat recovery. The low energy density of these heat sources requires small-scale desalination systems whose layout and operation may differ from large-scale plant. In this work, new plant configurations for a small-scale multi-effect distillation system are proposed and analyzed from a thermodynamic and economic point of view. Each configuration tends to better exploit the energy content of the various streams by improving heat recovery, according to an increasing layout complexity. These configurations were studied in two layouts, differing in the way seawater and brine fed the various effect. The feed mass flow in each effect was varied to maximize the recovery ratio by imposing the maximum salt concentration in the brine related to calcium sulphate precipitation. Numerical simulations were conducted in Aspen Plus environment by varying the top brine temperature with a fixed bottom brine temperature of 40 °C. The electrolyte non-random two liquid equation of state was adopted to evaluate saltwater properties and an inter-model comparison with a validated algebraic model was carried out. The configurations implementing seawater preheating increased the performance ratio up to 10% due to the better exploitation of the energy content of distillate streams. The proposed solutions with the maximization of the recovery ratio demonstrated to be cost-effective with respect to the base multi-effect distillation configuration when thermal energy cost became relevant. In the case of negligible thermal energy cost (waste heat recovery) the base configuration was the preferable solution in terms of water cost, despite the lower performance ratio.

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 1%
Top 10%
Top 1%
Green
bronze
Upload OA version
Are you the author? Do you have the OA version of this publication?