Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Digital.CSIC
Article . 2020 . Peer-reviewed
Data sources: Digital.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental analysis of atmospheric heat sinks as heat dissipators

Authors: MCarmen Guerrero Delgado; José Sánchez Ramos; MCarmen Pavón Moreno; José Antonio Tenorio Ríos; Servando Álvarez Domínguez;

Experimental analysis of atmospheric heat sinks as heat dissipators

Abstract

Overheating, a general problem both in urban spaces and inside buildings, calls for the deployment of passive cooling techniques to reduce energy consumption, protect the environment and institute satisfactory comfort levels. A key factor in such techniques is the capitalisation on the cooling potential of natural heat sinks. The sky, one such sink, has essentially limitless cooling power. In addition, its temperature on fair nights is lower than that of other environmental sinks (ground and air). The sky’s promise in that respect prompted this exploration of the potential of nocturnal radiation cooling. A review of the state of the art revealed that in all the radiative dissipators developed and tested to date the dissipation fluid (water) transferred heat indirectly to the heat sink (the sky) by circulating water inside solar collector pipes. The highest values reported for maximum dissipation power were on the order of 100 W/m2. The present study aimed to asses night time dissipation power in a dual system in which water circulated either inside pipes or flowed down the outer surface of the collector. The two modes, one involving in-pipe circulation and the other outer surface downflow, were compared experimentally, for whereas the former has been analysed and assessed by earlier researchers, the latter has not. The empirical findings verified that downflow setups enhanced cooling, delivering up to five-fold the dissipation power obtained with the conventional arrangement. This study was funded by the Spanish Ministry of the Economy and Competitiveness under DACAR project ‘Zero-Energy Balance Districts through Algorithms of Adaptive Comfort and Optimal Management of Energy Networks’ (BIA2016-77431-C2-2-R); the ERDF under Urban Innovative Actions programme CartujaQanat project (UIA03-301) ‘Recovering Street life in a Climate-Changing World’; and the University of Seville under Research Plan VI (VPPI-US). Peer reviewed

Country
Spain
Keywords

Overheating, Passive cooling, Natural sinks, Radiative cooling, Heat dissipation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 37
  • 19
    views
    37
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC1937
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
9
Top 10%
Average
Top 10%
19
37
Green
bronze