Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SINTEF Open
Article . 2020
Data sources: SINTEF Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A study of the techno-economic feasibility of H2-based energy storage systems in remote areas

Authors: Marocco, P.; Ferrero, D.; Gandiglio, M.; Ortiz, M. M.; Sundseth, K.; Lanzini, A.; Santarelli, M.;

A study of the techno-economic feasibility of H2-based energy storage systems in remote areas

Abstract

Abstract The development of efficient and sustainable energy solutions and the attempt to reduce carbon dioxide emissions are leading to an increasing penetration of Renewable Energy Sources (RES). Effective Electrical Energy Storage (EES) solutions need therefore to be developed to deal with the issue of fitting locally available RES and loads. Hydrogen can become an interesting option because of its high energy density, long-term storage capability and modularity. In particular, in isolated micro-grid and off-grid remote areas, intermittent RES integrated with H2-based storage systems can allow to lower, or even eliminate, the usage of diesel engines and avoid the need for expensive and invasive grid connections. The present study is part of the European REMOTE project, whose main goal is to prove the added value of H2-based energy storage solutions with respect to alternative technologies in terms of economics, technical and environmental benefits. Four demonstration sites supplied by renewable electricity will be installed in either isolated micro-grids or off-grid remote areas throughout all Europe, from Italy (two sites) and Greece to Norway. The aim of this work is to perform a techno-economic analysis and demonstrate the effectiveness of the hybrid H2-battery Power-To-Power (P2P) solution in reducing the usage of external sources (e.g., diesel engines or grid) in a cost-effective way, with different load and environment conditions. The economic viability of the considered scenarios was outlined by computing the Levelized Cost Of Energy (LCOE). For each of the four sites, the innovative renewable configuration was compared with the current/alternative one. The REMOTE project partners provided main input data for the analysis: techno-economic data from the technology suppliers, whereas electricity consumption and RES production values from the end users of the four isolated locations. LCOE values derived using cost inputs both from REMOTE and literature are presented for a comparison. Results from the energy simulations revealed that the need for an external source is significantly reduced thanks to RES together with the hybrid storage system. Moreover, for all the four sites the renewable solution was shown to be more profitable than the current or alternative one, either in the short term or in the longer term.

Countries
Norway, Italy
Related Organizations
Keywords

Energy storage, Battery, Energy storage, Off-grid, Electrolysis, Hydrogen, Battery, Power-to-power, Electrolysis, Off-grid, Power-to-power, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%
Green