Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermoeconomic comparison between the organic flash cycle and the novel organic Rankine flash cycle (ORFC)

Authors: Gustavo Bonolo de Campos; Cleverson Bringhenti; Alberto Traverso; Jesuino Takachi Tomita;

Thermoeconomic comparison between the organic flash cycle and the novel organic Rankine flash cycle (ORFC)

Abstract

Abstract Growing environmental concerns are driving the energy market toward the development of thermodynamic cycles to harness renewable energy and waste heat. This manuscript introduces the novel organic Rankine flash cycle, which combines the organic Rankine cycle with the trilateral cycle, merging their advantages in terms of high specific power output and low heat transfer irreversibility, respectively. By comparing the organic Rankine flash cycle to the organic flash cycle, it was found that the proposed architecture reaches a peak exergy efficiency at a more realistic value of two-phase expansion volume flow ratio, consistently achieves higher energy and exergy efficiencies, presents a lower cost, and is not constrained to operate close to the working fluid saturation temperature, promising easier operability. Considering pentane as working fluid, the exergy efficiency of the organic Rankine flash cycle is 18%p higher for a heat source temperature of 150 °C, 12%p for 175 °C, and 4%p for 200 °C. The attractive thermoeconomic performance of the proposed organic Rankine flash cycle highlights the potential of such a cycle as a new paradigm in the ORC panorama, encouraging further investigation towards practical demonstration.

Country
Italy
Keywords

Organic flash cycle; Organic Rankine cycle; Organic Rankine flash cycle; Thermoeconomics; Trilateral cycle

Powered by OpenAIRE graph
Found an issue? Give us feedback