Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From sustainability assessment to sustainability management for policy development: The case for electric vehicles

Authors: Nuri Cihat Onat; Nour N.M. Aboushaqrah; Murat Kucukvar; Faris Tarlochan; Abdel Magid Hamouda;

From sustainability assessment to sustainability management for policy development: The case for electric vehicles

Abstract

Abstract In this research, a hybrid life cycle sustainability assessment and multi-objective decision making are jointly applied to highlight how sustainability assessment results can be used for sustainable management and further country-level policymaking, and Qatar is selected as a case study to implement the proposed method. 14 macro-level sustainability indicators are quantified for four different technologies of sport utility vehicles (SUV), including internal combustion vehicles (ICV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV), using a global multiregional input–output analysis to distinguish in between regional and global supply chain-related impacts. A compromise programming model is developed based on the sustainability assessment results to determine what should be the optimal distribution of alternative vehicles based on varying importance of different sustainability indicators and scope of the analysis. The optimal vehicle distributions are determined for two different battery charging scenarios, through the existing electricity grid and solar energy. Furthermore, the optimal distributions are also investigated when the scope of the analysis is limited to regional boundary versus the total impacts encompassing the global supply chains in addition to the regional impacts. When environmental indicators are assigned the top priority (100%), the results show that HEVs should compromise over 90% of the vehicle fleet. In a balanced weighting case, the optimal vehicle distribution consists of around 81% HEV and 19% BEV if charged through the electricity grid. The proposed method can provide important insights for developing policies to achieve sustainable and efficient policies considering various aspects including the scope of assessment and relative importance of quantified sustainability indicators.

Country
Qatar
Related Organizations
Keywords

Multi-objective decision making, Sustainable transportation, Electric vehicles, Sustainability management, 629, Hybrid life cycle sustainability assessment, Global multiregional input?output analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 1%
Top 10%
Top 1%
Green