Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production

Authors: Steven Lim; Cheng Tung Chong; Jo-Han Ng; Tine Seljak; Veeramuthu Ashokkumar; Hwai Chyuan Ong; Bo Tian; +4 Authors

Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production

Abstract

Abstract The increase in human consumption of plant and animal oils has led to the rise in waste cooking oil (WCO) production. Instead of disposing the used cooking oil as waste, recent technological advance has enabled the use of WCO as a sustainable feedstock for biofuels production, thereby maximising the value of biowastes via energy recovery while concomitantly solving the disposal issue. The current regulatory frameworks for WCO collection and recycling practices imposed by major WCO producing countries are reviewed, followed by the overview of the progress in biodiesel conversion techniques, along with novel methods to improve the feasibility for upscaling. The factors which influence the efficiency of the reactions such as properties of feedstock, heterogenous catalytic processes, cost effectiveness and selectivity of reaction product are discussed. Ultrasonic-assisted transesterification is found to be the least energy intensive method for producing biodiesel. The production of bio-jet fuels from WCO, while scarce, provide diversity in waste utilisation if problems such as carbon chain length, requirements of bio-jet fuel properties, extreme reaction conditions and effectiveness of selected catalyst-support system can be solved. Technoeconomic studies revealed that WCO biofuels is financially viable with benefit of mitigating carbon emissions, provided that the price gap between the produced fuel and commercial fuels, sufficient supply of WCO and variation in the oil properties are addressed. This review shows that WCO is a biowaste with high potential for advanced transportation fuel production for ground and aviation industries. The advancement in fuel production technology and relevant policies would accelerate the application of sustainable WCO biofuels.

Countries
United Kingdom, Slovenia, Slovenia, Hungary, Hungary
Keywords

Intensification, 660, odpadno kuhinsko olje, biodizel, letalska goriva, procesna optimizacija, aternativna energija, Waste cooking oil, TJ Mechanical engineering and machinery / gépészmérnöki tudományok, Biojet fuel, info:eu-repo/classification/udc/662, Biodiesel, Alternative energy, waste cooking oil, biodiesel, biojet fuel, intensification, alternative energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    201
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
201
Top 0.1%
Top 10%
Top 0.1%