Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Conversion an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Conversion and Management
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards robust investment decisions and policies in integrated energy systems planning: Evaluating trade-offs and risk hedging strategies for remote communities

Authors: Marvin Rhey Quitoras; Paul Rowley; Pietro Elia Campana; Pedro Cabrera; Curran Crawford;

Towards robust investment decisions and policies in integrated energy systems planning: Evaluating trade-offs and risk hedging strategies for remote communities

Abstract

Policy and investment decisions in developing clean energy strategies for remote communities are subject to multiple uncertainties that impact overall strategy outcomes, including those related to environmental emissions and energy costs. In this context, robust modeling approaches are required that can clarify potential outcomes while subject to such uncertainties. This work introduces a novel modeling framework that enables enhanced decision making in energy systems planning for remote communities, which for the first time takes into account context-specific decision-maker attitudes towards multiple inter-related uncertainties and various energy solution philosophies. In particular, multiple energy system configurations are evaluated by simultaneously minimizing the levelised cost of energy and fuel consumption, with a test case for a specific community in the Northwest Territories, Canada. The concept of model robustness and validity together with the stochastic nature of uncertain parameters are combined in a multi-objective optimization framework that elucidates the full spectrum of energy solutions available in such a remote Arctic context. Introducing known uncertainties in renewable energy characteristics was found to reduce overall energy yields from the renewable energy technologies. Specifically, the deterministic renewable energy penetration of 69% from a specific energy system configuration reduced to a mean of 51% after the inclusion of uncertainties via probabilistic simulation. Conversely, diesel fuel consumption increased to 750,000 L/yr (mean) from its initial deterministic value of 447,470 L/yr. Holistic energy solutions which include both supply and demand-side considerations are also analyzed. Specifically, a reduced community domestic heating load of 40% was achieved via retrofit of high performance building fabric enclosures evaluated in conjunction with renewable energy supply options. Ultimately, insights and real-world applications have been synthesized to provide coherent recommendations on strategies to address energy security, energy affordability and environmental sustainability, along with meaningful propositions towards Indigenous community-led energy projects in a range of contexts. 2,743 9,709 Q1 Q1 SCIE

Keywords

Energy Policy, Risk Hedging Strategies, Uncertainty, 540104 Desarrollo regional, Robust Optimization, Energy Sovereignty, 332205 Fuentes no convencionales de energía, 330609 Transmisión y distribución, 120715 Fiabilidad de sistemas, Indigenous Peoples

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
hybrid