Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2021
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2022
Data sources: RUIdeRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®

Authors: Puig Gamero, María; Torrão Pio, Daniel; Cruz Tarelho, Luís António da; Sánchez Paredes, Paula; Sanchez-Silva, Luz;

Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®

Abstract

The direct (with air) gasification process of biomass in bubbling fluidized bed reactor was simulated using Aspen Plus®. The reactor was divided in three parts: the pyrolysis zone, combustion zone and reduction zone. The pyrolysis process simulation was supported by an external MS-Excel® subroutine to define the yield and composition of the main components, namely, char, gas and tar. Whereas the combustion and reduction processes were simulated using a kinetic model. These models were calibrated and thereafter validated with a set of distinct results from gasification of four different types of biomass using a pilot-scale bubbling fluidized bed reactor, with different equivalence ratio (from 0.17 to 0.35) and temperature (from 709 °C to 859 °C). The results obtained from the simulation, namely the concentration of CO, CO2, H2, CH4, C2H4 in the producer gas, were in good agreement with the experimental ones for a set of biomass types and operating conditions. Amongst the gases analysed, H2 gas was predicted with the lowest accuracy, always being overestimated; despite that, the highest absolute error obtained for H2 was only 4.4%. Finally, the tar concentration predicted was between 20 and 42 g/Nm3 and it decreased with the increase of equivalence ratio, temperature and biomass particle size. Se simuló el proceso de gasificación directa (con aire) de biomasa en un reactor de lecho fluidizado burbujeante utilizando Aspen Plus®. El reactor se dividió en tres partes: la zona de pirólisis, la zona de combustión y la zona de reducción. La simulación del proceso de pirólisis estuvo respaldada por una subrutina externa de MS-Excel® para definir el rendimiento y la composición de los componentes principales, a saber, carbón, gas y alquitrán. Mientras que los procesos de combustión y reducción se simularon utilizando un modelo cinético. Estos modelos fueron calibrados y posteriormente validados con un conjunto de resultados distintos de la gasificación de cuatro tipos diferentes de biomasa utilizando un reactor de lecho fluidizado burbujeante a escala piloto, con diferente relación de equivalencia (de 0,17 a 0,35) y temperatura (de 709 °C a 859 °C). ºC). Los resultados obtenidos de la simulación, a saber, la concentración de CO, CO 2, H 2 , CH 4, C 2 H 4 en el gas productor, estuvieron en buen acuerdo con los experimentales para un conjunto de tipos de biomasa y condiciones de operación. Entre los gases analizados, el gas H 2 fue el que predijo con menor precisión, siempre sobrestimado; a pesar de eso, el error absoluto más alto obtenido para H 2 fue solo 4.4%. Finalmente, la concentración de alquitrán prevista estaba entre 20 y 42 g/Nm 3 y disminuyó con el aumento de la relación de equivalencia, la temperatura y el tamaño de partícula de la biomasa.

Country
Spain
Keywords

Biomasa, Aspen Plus, Lecho fluidizado burbujeante, Kinetic modelling, Gasificación, Modelado cinético, Biomass, Bubbling fluidized bed, Gasification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 1%
Green