
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®

handle: 10578/29858
Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®
The direct (with air) gasification process of biomass in bubbling fluidized bed reactor was simulated using Aspen Plus®. The reactor was divided in three parts: the pyrolysis zone, combustion zone and reduction zone. The pyrolysis process simulation was supported by an external MS-Excel® subroutine to define the yield and composition of the main components, namely, char, gas and tar. Whereas the combustion and reduction processes were simulated using a kinetic model. These models were calibrated and thereafter validated with a set of distinct results from gasification of four different types of biomass using a pilot-scale bubbling fluidized bed reactor, with different equivalence ratio (from 0.17 to 0.35) and temperature (from 709 °C to 859 °C). The results obtained from the simulation, namely the concentration of CO, CO2, H2, CH4, C2H4 in the producer gas, were in good agreement with the experimental ones for a set of biomass types and operating conditions. Amongst the gases analysed, H2 gas was predicted with the lowest accuracy, always being overestimated; despite that, the highest absolute error obtained for H2 was only 4.4%. Finally, the tar concentration predicted was between 20 and 42 g/Nm3 and it decreased with the increase of equivalence ratio, temperature and biomass particle size. Se simuló el proceso de gasificación directa (con aire) de biomasa en un reactor de lecho fluidizado burbujeante utilizando Aspen Plus®. El reactor se dividió en tres partes: la zona de pirólisis, la zona de combustión y la zona de reducción. La simulación del proceso de pirólisis estuvo respaldada por una subrutina externa de MS-Excel® para definir el rendimiento y la composición de los componentes principales, a saber, carbón, gas y alquitrán. Mientras que los procesos de combustión y reducción se simularon utilizando un modelo cinético. Estos modelos fueron calibrados y posteriormente validados con un conjunto de resultados distintos de la gasificación de cuatro tipos diferentes de biomasa utilizando un reactor de lecho fluidizado burbujeante a escala piloto, con diferente relación de equivalencia (de 0,17 a 0,35) y temperatura (de 709 °C a 859 °C). ºC). Los resultados obtenidos de la simulación, a saber, la concentración de CO, CO 2, H 2 , CH 4, C 2 H 4 en el gas productor, estuvieron en buen acuerdo con los experimentales para un conjunto de tipos de biomasa y condiciones de operación. Entre los gases analizados, el gas H 2 fue el que predijo con menor precisión, siempre sobrestimado; a pesar de eso, el error absoluto más alto obtenido para H 2 fue solo 4.4%. Finalmente, la concentración de alquitrán prevista estaba entre 20 y 42 g/Nm 3 y disminuyó con el aumento de la relación de equivalencia, la temperatura y el tamaño de partícula de la biomasa.
- University of Aveiro Portugal
- University of Castile-La Mancha Spain
- University of Aveiro Portugal
Biomasa, Aspen Plus, Lecho fluidizado burbujeante, Kinetic modelling, Gasificación, Modelado cinético, Biomass, Bubbling fluidized bed, Gasification
Biomasa, Aspen Plus, Lecho fluidizado burbujeante, Kinetic modelling, Gasificación, Modelado cinético, Biomass, Bubbling fluidized bed, Gasification
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).101 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
