
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal management of energy sharing in a community of buildings using a model predictive control

Exporting generated electricity by on-site renewable energy systems from buildings to the grid is only slightly profitable in many countries. Therefore, it is required to investigate the benefits of sharing generated energy in a microgrid within a community of buildings. Exploiting the benefits of peer-to-peer energy exchange between prosumers in a community can make the best use of the on-site generation while reducing their bills. This study elaborates the potential of energy management to minimize the electricity cost of a community consisted of multiple buildings and connected to a microgrid. To implement this, an energy management system is designed based on non-linear economic model predictive control and successive linear programming for sharing the on-site surplus generated electricity between the buildings in the community. Four buildings are simulated and studied as an example of a small community. These buildings are dissimilar in their age, thermal mass, insulation, heating system and on-site renewable energy systems. It is shown that considering the community of buildings as a single entity, the novel model predictive control can be efficiently used for minimizing the energy cost of the community that has various sources of energy generation, conversion and storage, including significant non-linear interactions. Three different scenarios of the energy management system for the studied community are investigated, and the results indicate that the annual electricity energy cost for single buildings can be reduced by 3.0% to 87.9%, depending on the building and its systems, and by 5.4% to 7.7% on the community level.
- VTT Technical Research Centre of Finland Finland
- Aalto University Finland
- Edinburgh Napier University United Kingdom
- Edinburgh Napier University United Kingdom
- VTT Technical Research Centre of Finland Finland
ta212, ta222, Energy sharing, Microgrid, Energy management system, Energy sharing, Microgrid, Model predictive control, Non-linear optimization, Non-linear optimization, SDG 7 - Affordable and Clean Energy, Model predictive control, Energy management system
ta212, ta222, Energy sharing, Microgrid, Energy management system, Energy sharing, Microgrid, Model predictive control, Non-linear optimization, Non-linear optimization, SDG 7 - Affordable and Clean Energy, Model predictive control, Energy management system
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
