Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models

Authors: Xuemeng Weng; Ali Asghar Heidari; Guoxi Liang; Huiling Chen; Xinsheng Ma; Majdi Mafarja; Hamza Turabieh;

Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models

Abstract

Abstract A critical aspect of the design, simulation, control, and optimization of Photovoltaic (PV) systems is evaluating the PV model's optimal parameter values based on the actual measured voltage and current values. To address that concern, an enhanced spherical evolution algorithm with no metaphor is proposed for identifying unknown parameters in PV models. The algorithm combines Laplace's cross search mechanism (LCS) and the Nelder-Mead simplex method (NMs), called LCNMSE. In a sense, the goal of LCS is to enrich the diversity of solution sets and make the variety of solutions coarser. The NMs enhances the algorithm exploitation by further scanning more promising ranges in the local region. This idea is developed to improve the local optimal solution's accuracy. In conjunction with both, a balance between exploration and exploitation is maintained. To verify the effectiveness of LCNMSE on high and multi-peaks cases, it is compared with eight state-of-the-art and basic algorithms based on 28 benchmark functions selected from 23 benchmark functions and 30 IEEE CEC2014 benchmark problems. Then, the method is utilized to evaluate the solar cells' parameters and PV modules. Experiments show that the algorithm performs well in evaluating different PV models' unknown parameters than other existing algorithms. Therefore, LCNMSE is an accurate and efficient technique for solar cell and PV models' parameter extraction problems. For further info or any question on metaphor-free LCNMSE, please visit https://aliasgharheidari.com .

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 1%
Top 10%
Top 1%