Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An in-depth study of nonlinear parametric characterization for thermoelectric generator modules

Authors: Hailong He; Yi Wu; Chunping Niu; Fang Zhenxuan; Mingzhe Rong;

An in-depth study of nonlinear parametric characterization for thermoelectric generator modules

Abstract

Abstract Thermoelectric (TE) parameters provide indispensable data for the optimal design, accurate modeling, and performance assessment of off-the-shelf TE modules. However, the lack of unified characterization methods for these nonlinear data creates challenges for the design of large-scale TE systems. This paper aims at a thorough exploration of the accuracy, efficiency, and applicability of five typically reported characterization methods in terms of temperature-dependent material-level TE parameters (Seebeck coefficient, thermal conductivity and electrical resistivity). A common test setup was built and specifically improved for the convenient and high-precision measurement of heat rate. The four methods except for the Buist’s modified Harman method can characterize the satisfactory material-level TE parameters only if the thermoelectric generator (TEG)’s irreversible factors are considered including the thermal resistances of substrates and interlaminar contact resistances. The applicability of each method in a large temperature range is discussed by simulation beyond their inherent limits of adopted setups in this paper. Most methods show significant deviations at high temperatures due to their inherent parametric spatial-independence assumptions. From the perspective of their theoretical feasibility and practical accuracy, the quasi steady-state method is more advantageous than others. This research can guide the employment of characterization methods and assist the design and optimization of large-scale TE systems.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average