
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Framework of airfoil max lift-to-drag ratio prediction using hybrid feature mining and Gaussian process regression

Abstract The maximum lift-to-drag coefficient of an airfoil directly affects the aerodynamic performance of wind turbine. Machine learning methods are known for being really effective in helping to predict this parameter in a faster and more accurate way. So far, the majority of related studies have focused on the use of artificial neural networks to make this prediction, but this model has issues with its poor interpretation and the confidence level of its results was unclear. In this paper, a novel framework is proposed, involving the Gaussian process regression and a hybrid feature mining process. The aim is to use the new framework to evaluate the maximum lift-to-drag ratio of given airfoils under a turbulent flow condition, where the Reynolds number is around 100,000. The feature mining process here designed contains a hybrid feature pool that comprises various geometric characters, and a hybrid feature selector that can assist the prediction performance and make it better. Based on the airfoil dataset of the University of Illinois at Urbana-Champaign that contains a total of 1432 profiles, a comparative analysis was conducted. The results showed that the current framework can provide a more accurate estimate than parallel models in both single-point and interval aspects of view. Noticeably, the model reached an overall precision of 95.2% and 94.1% on training and testing sets, respectively. Moreover, the simplicity and the confidence reference from the model output were further illustrated with a case study, which also verified that how it can serve real engineering application.
- Shanghai Jiao Tong University China (People's Republic of)
- Shanghai Jiao Tong University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
