Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model

Authors: Jie Su; Yaoran Chen; Zhaolong Han; Yongsheng Zhao; Zhikun Dong; Dai Zhou; Yan Wang; +1 Authors

2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model

Abstract

Abstract Short-term wind speed forecast is of great importance to wind farm regulation and its early warning. Previous studies mainly focused on the prediction at a single location but few extended the task to 2-D wind plane. In this study, a novel deep learning model was proposed for a 2-D regional wind speed forecast, using the combination of the auto-encoder of convolutional neural network (CNN) and the long short-term memory unit (LSTM). The 12-hidden-layer deep CNN was adopted to encode the high dimensional 2-D input into the embedding vector and inversely, to decode such latent representation after it was predicted by the LSTM module based on historical data. The model performance was compared with parallel models under different criteria, including MAE, RMSE and R2, all showing stable and considerable enhancements. For instance, the overall MAE value dropped to 0.35 m/s for the current model, which is 32.7%, 28.8% and 18.9% away from the prediction results using the persistence, basic ANN and LSTM model. Moreover, comprehensive discussions were provided from both temporal and spatial views of analysis, revealing that the current model can not only offer an accurate wind speed forecast along timeline (R2 equals to 0.981), but also give a distinct estimation of the spatial wind speed distribution in 2-D wind farm.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    142
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
142
Top 1%
Top 10%
Top 0.1%