
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
PV arrays reconfiguration for partial shading mitigation: Recent advances, challenges and perspectives

Abstract An intractable but common problem in photovoltaic systems is that the power generated by photovoltaic will reduce seriously due to partial shading. In order to solve this problem, the photovoltaic array reconfiguration methods are developed to mitigate the impact of partial shading and increase output power. This work aims to undertake a comprehensive review on state-of-the-art photovoltaic array reconfiguration methods through a thoroughly investigation of 125 recently published papers. Compared with prior reviews, this work makes a more exhaustive classification, in which sixty-four methods are thoroughly categorized into nine groups. In addition, nine evaluation criteria are summarized for researchers to choose according to their specific requirements. Furthermore, a comprehensive comparison is provided based on ten specific indicators, such as monitor variables, complexity, response speed, rate of shadow dispersion, merits-demerits and application range, etc. Among these methods, the dynamic methods represented by meta-heuristic algorithms show more desirable performance than the static methods due to their faster response speed and prominent adaptability (e.g. the water cycle algorithm has the best performance with a power enhancement of 28%–37%, the TomTom algorithm has inferior performance with power enhancement of only 5%–25%). Finally, this review proposes six constructive suggestions and perspectives to offer technical inspirations for future research in the related fields.
- Kunming University of Science and Technology China (People's Republic of)
- Shandong Women’s University China (People's Republic of)
- University of Warwick United Kingdom
- Electric Power Research Institute United States
- Kunming University of Science and Technology China (People's Republic of)
690, H100 General Engineering, H221 Energy Resources
690, H100 General Engineering, H221 Energy Resources
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).104 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
