Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PV arrays reconfiguration for partial shading mitigation: Recent advances, challenges and perspectives

Authors: Bo Yang; Hua Ye; Jiale Li; Hongchun Shu; Shaocong Wu; Haoyin Ye; Haoyin Ye; +3 Authors

PV arrays reconfiguration for partial shading mitigation: Recent advances, challenges and perspectives

Abstract

Abstract An intractable but common problem in photovoltaic systems is that the power generated by photovoltaic will reduce seriously due to partial shading. In order to solve this problem, the photovoltaic array reconfiguration methods are developed to mitigate the impact of partial shading and increase output power. This work aims to undertake a comprehensive review on state-of-the-art photovoltaic array reconfiguration methods through a thoroughly investigation of 125 recently published papers. Compared with prior reviews, this work makes a more exhaustive classification, in which sixty-four methods are thoroughly categorized into nine groups. In addition, nine evaluation criteria are summarized for researchers to choose according to their specific requirements. Furthermore, a comprehensive comparison is provided based on ten specific indicators, such as monitor variables, complexity, response speed, rate of shadow dispersion, merits-demerits and application range, etc. Among these methods, the dynamic methods represented by meta-heuristic algorithms show more desirable performance than the static methods due to their faster response speed and prominent adaptability (e.g. the water cycle algorithm has the best performance with a power enhancement of 28%–37%, the TomTom algorithm has inferior performance with power enhancement of only 5%–25%). Finally, this review proposes six constructive suggestions and perspectives to offer technical inspirations for future research in the related fields.

Country
United Kingdom
Keywords

690, H100 General Engineering, H221 Energy Resources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 1%
Top 10%
Top 1%
bronze