
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications

[EN] In the new scenario where the transportation sector must be decarbonized to limit global warming, fuel cell-powered aerial vehicles have been selected as a strategic target application to compose part of the urban fleet to minimize road transport congestion and make goods and personal transportation fast and efficient. To address the necessity of clean and efficient urban air transport, this work consists of the conceptual development of a lightweight rotary-winged transport vehicle using a hydrogen-based fuel cell propulsion system and the optimization of its energy balance. For that purpose, the methods for integrating the coupled aerodynamic and propulsion system sizing and optimization was developed with the aim of designing concepts capable of carrying 0 (unmanned aerial vehicle - Design 1) and 1 (Aerotaxi - Design 2) passengers for a distance of 300 km at a cruise altitude of 500 m with a minimum climbing rate capability of 6 m s-1 at 1000 m. The results show how these designs with the desired performance specifications can be obtained with a vehicle mass ranging from 416 to 648 kg, depending on the application, and with specific range and endurance respectively within 46.2-47.8 km/kg and 20.4-21.3 min/kg for design 1 and 33.3-33.8 km/kg and 12.5-13.9 min/kg for design 2. This research has been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty Training (FPU) program (FPU19/00550) and FEDER and the Generalitat Valenciana, Consellerfa d'Innovacio, Universitats, Ciencia i Societat Digital through project IDIFEDER/2021/039. Funding for open access charge: CRUE-Universitat Politecnica de Valencia.
Helicopter, Energy balance optimization, Aerodynamic design, 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos, UAV, Aerotaxi, MAQUINAS Y MOTORES TERMICOS, 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos, INGENIERIA AEROESPACIAL, Hydrogen fuel cel
Helicopter, Energy balance optimization, Aerodynamic design, 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos, UAV, Aerotaxi, MAQUINAS Y MOTORES TERMICOS, 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos, INGENIERIA AEROESPACIAL, Hydrogen fuel cel
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
