Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy Conversion and Management
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scrutinizing effect of temperature and pressure variation of a double-pressure dual-cycle geothermal power plant turbines on the temperature profile and heat gain of the heat exchangers

Authors: Baydar, Ceyhun; Yağlı, Hüseyin; Ata, Sadık; Koç, Yıldız; Koç, Ali; Kocaman, Emrullah;

Scrutinizing effect of temperature and pressure variation of a double-pressure dual-cycle geothermal power plant turbines on the temperature profile and heat gain of the heat exchangers

Abstract

In geothermal power plants with dual pressure cycle technology, the optimisation of turbine inlet parameters depending on the pressure and temperature of the geothermal fluid is a very important parameter affecting the production capacity of such plants. In combined systems, where the second stage (low pressure) is fed by the first stage (high pressure), failure to determine the appropriate operating conditions leads to the problem of not achieving optimum performance. In this context, the study aims to develop a methodology for predicting the performance of the system, based on the geothermal water temperatures entering and leaving the heat exchangers, in order to clearly see the effect of the operations carried out within the scope of optimising the turbine inlet parameters on the system behaviour. In this study, EBSILON (R) Professional software developed by Steag GbmH was utilised to simulate the determined correlations. The effect of the heat exchangers (preheater, evaporator and superheater) in both stage-1 and stage-2 on the temperature profiles and heat gains were determined at 10-17 bar, 126.5-165 degrees C for Turbine-1 and 4-8 bar, 84-135 degrees C for Turbine-2. Optimum turbine inlet temperature and pressure have been determined for maximum heat input and exergy efficiency. In this context, each cycle in the Energy Converter System (ECS) was first simulated by changing the turbine input parameters and then thermal analyses of the system were performed using the performance outputs obtained from the simulation software. For turbine-1, it is observed that heat transfer decreases in stage-1 with increasing pressure and temperature, while heat transfer increases in stage-2 fed from stage-1. After 12 bar and 136 degrees C, the heat transfer of the ECS started to increase and the maximum heat transfer amount was reached at 17 bar and 155 degrees C. However, it was determined that the exergy efficiency of the ECS started to decrease after 15 bar and 147.6 degrees C. For turbine-2, it was found that the increase in pressure and temperature decreases the ECS heat transfer but increases the exergy efficiency. As a result of numerous iterations with EBSILON (R) Professional software, a maximum exergy efficiency of 50.53% was achieved in turbine-1 (15 bar, 147.6 degrees C) and turbine-2 (8 bar, 114 degrees C).

Country
Turkey
Keywords

Heat-flow, Working Fluid, Energy & Fuels, Turbines, Firedamp, Geothermal fields, Fluidized bed process, Exergy efficiencies, Mechanics, Low temperature production, Dual cycle, Temperature profile, Heat transfer performance, Geothermal power plant, Pressure and temperature, Temperature profiles, Waste Heat, Geothermal power plants, Energy converters, Converter system, Heat gains, Temperature and pressures, Organic Rankine Cycle, Heat exchanger, Thermodynamics, Geothermal power, Heat flow

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research