Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of East A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Economics
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Economics
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2019
Data sources: UCL Discovery
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regional development and carbon emissions in China

Authors: Zheng, Jiali; Mi, Zhifu; Coffman, D'Maris; Milcheva, Stanimira; Shan, Yuli; Guan, Dabo; Wang, Shouyang;

Regional development and carbon emissions in China

Abstract

China announced at the Paris Climate Change Conference in 2015 that the country would reach peak carbon emissions around 2030. Since then, widespread attention has been devoted to determining when and how this goal will be achieved. This study aims to explore the role of China’s changing regional development patterns in the achievement of this goal. This study uses the logarithmic mean Divisia index (LMDI) to estimate seven socioeconomic drivers of the changes in CO2 emissions in China since 2000. The results show that China’s carbon emissions have plateaued since 2012 mainly because of energy efficiency gains and structural upgrading (i.e., industrial structure, energy mix and regional structure). Regional structure, measured by provincial economic growth shares, has drastically reduced CO2 emissions since 2012. The effects of these drivers on emissions changes varied across regions due to their different regional development patterns. Industrial structure and energy mix resulted in emissions growth in some regions, but these two drivers led to emissions reduction at the national level. For example, industrial structure reduced China’s CO2 emissions by 1.0% from 2013-2016; however, it increased CO2 emissions in the Northeast and Northwest regions by 1.7% and 0.9%, respectively. By studying China’s plateauing CO2 emissions in the new normal stage at the regional level, it is recommended that regions cooperate to improve development patterns.

Country
United Kingdom
Related Organizations
Keywords

China, Structural changes, 330, New normal, CO2 emissions, Regional development, 950, LMDI

Powered by OpenAIRE graph
Found an issue? Give us feedback