
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Forecasting oil and gold volatilities with sentiment indicators under structural breaks

handle: 2263/84434
This paper contributes to the literature on forecasting the realized volatility of oil and gold by (i) utilizing the Infinite Hidden Markov (IHM) switching model within the Heterogeneous Autoregressive (HAR) framework to accommodate structural breaks in the data and (ii) incorporating, for the first time in the literature, various sentiment indicators that proxy for the speculative and hedging tendencies of investors in these markets as predictors in the forecasting models. We show that accounting for structural breaks and incorporating sentiment-related indicators in the forecasting model does not only improve the out-of-sample forecasting performance of volatility models but also has significant economic implications, offering improved risk-adjusted returns for investors, particularly for short-term and mid-term forecasts. We also find evidence of significant cross-market information spilling over across the oil, gold, and stock markets that also contributes to the predictability of short-term market fluctuations due to sentiment-related factors. The results highlight the predictive role of investor sentiment-related factors in improving the forecast accuracy of volatility dynamics in commodities with the potential to also yield economic gains for investors in these markets. ; The National Natural Science Foundation of China; Guangzhou Philosophy and Social Sciences Fund and Fundamental Research Fund for Central University. ; http://www.elsevier.com/locate/eneco ; 2023-06-09 ; hj2022 ; Economics
- Institutes of Science and Development China (People's Republic of)
- University of Pretoria South Africa
- University of Chinese Academy of Sciences China (People's Republic of)
- Southern Illinois University Carbondale United States
- Chinese Academy of Sciences China (People's Republic of)
330, Speculation, Infinite hidden Markov model, Structural break, 332, Crude oil, Realized volatility forecast
330, Speculation, Infinite hidden Markov model, Structural break, 332, Crude oil, Realized volatility forecast
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
