Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Economicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Economics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
https://dx.doi.org/10.60692/72...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.60692/ea...
Other literature type . 2022
Data sources: Datacite
Energy Economics
Article . 2022 . Peer-reviewed
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improvements to Modern Portfolio Theory based models applied to electricity systems

تحسينات على النماذج الحديثة القائمة على نظرية المحفظة المطبقة على أنظمة الكهرباء
Authors: Gabriel Castro; Claude Klöckl; Peter Regner; Johannes Schmidt; Amaro Olímpio Pereira;

Improvements to Modern Portfolio Theory based models applied to electricity systems

Abstract

Avec l'augmentation de la part des énergies renouvelables variables dans les systèmes électriques, de nombreuses études ont été développées afin de déterminer leur mix technologique et spatial optimal. La théorie du portefeuille moderne (MPT) a été fréquemment appliquée dans ce contexte. Cependant, certains aspects cruciaux, importants dans la planification énergétique, ne sont pas abordés par ces analyses. Nous proposons donc plusieurs améliorations et évaluons l'impact de chaque changement de formulation sur les résultats. Plus précisément, nous utilisons le coût de production au lieu de la capacité installée comme l'un des objectifs ; nous considérons la corrélation entre la demande et les profils de production ; et nous limitons les risques de pénurie via l'inclusion d'une mesure CVaR. Ces modifications sont présentées dans un modèle formel qui est également appliqué au cas du Brésil. Nous avons constaté que, après avoir inclus nos modifications proposées, la frontière efficace résultante diffère fortement de celle obtenue dans la formulation originale. La principale différence est que la nouvelle frontière efficace a une plage beaucoup plus courte de valeurs d'écart type acceptables. Par conséquent, de nombreux portefeuilles obtenus à partir de la formulation traditionnelle ont une probabilité beaucoup plus élevée de sous-production, en particulier les portefeuilles situés dans des régions où l'écart type est trop faible ou trop élevé. En outre, nous montrons que la diversification joue un rôle important dans le lissage de la production des portefeuilles de sources renouvelables variables.

Con el aumento de la participación de las energías renovables variables en los sistemas eléctricos, se desarrollaron muchos estudios con el fin de determinar su combinación tecnológica y espacial óptima. La teoría moderna de la cartera (MPT) se ha aplicado con frecuencia en este contexto. Sin embargo, algunos aspectos cruciales, importantes en la planificación energética, no se abordan en estos análisis. Por lo tanto, proponemos varias mejoras y evaluamos cómo cada cambio en la formulación afecta los resultados. Más específicamente, utilizamos el costo de generación en lugar de la capacidad instalada como uno de los objetivos; consideramos la correlación entre los perfiles de demanda y generación; y limitamos los riesgos de escasez mediante la inclusión de una medida CVaR. Estas modificaciones se presentan en un modelo formal que también se aplica al caso de Brasil. Encontramos que, después de incluir nuestras modificaciones propuestas, la frontera eficiente resultante difiere fuertemente de la obtenida en la formulación original. La principal diferencia es que la nueva frontera eficiente tiene un rango mucho más corto de valores de desviación estándar aceptables. Por lo tanto, muchas de las carteras obtenidas de la formulación tradicional tienen una probabilidad mucho mayor de subproducción, especialmente las carteras ubicadas en regiones con una desviación estándar demasiado baja o demasiado alta. Además, mostramos que la diversificación juega un papel importante para suavizar la producción de las carteras de fuentes renovables variables.

With the increase of the share of variable renewable energies in electricity systems, many studies were developed in order to determine their optimal technological and spatial mix. Modern Portfolio Theory (MPT) has been frequently applied in this context. However, some crucial aspects, important in energy planning, are not addressed by these analyses. We, therefore, propose several improvements and evaluate how each change in formulation impacts results. More specifically, we use generation cost instead of installed capacity as one of the objectives; we consider the correlation between demand and generation profiles; and we limit shortage risks via the inclusion of a CVaR measure. These modifications are presented in a formal model which is also applied to the case of Brazil. We found that, after including our proposed modifications, the resulting efficient frontier differs strongly from the one obtained in the original formulation. The main difference is that the new efficient frontier has a much shorter range of acceptable standard deviation values. Therefore, many of the portfolios obtained from the traditional formulation have a much higher probability of under-production, especially portfolios located at regions with standard deviation either too low or too high. Furthermore, we show that diversification plays an important role in smoothing output from portfolios of variable renewable sources.

مع زيادة حصة الطاقات المتجددة المتغيرة في أنظمة الكهرباء، تم تطوير العديد من الدراسات من أجل تحديد مزيجها التكنولوجي والمكاني الأمثل. تم تطبيق نظرية المحفظة الحديثة (MPT) بشكل متكرر في هذا السياق. ومع ذلك، فإن بعض الجوانب الحاسمة، المهمة في تخطيط الطاقة، لا تتناولها هذه التحليلات. لذلك، نقترح العديد من التحسينات ونقيم كيفية تأثير كل تغيير في الصياغة على النتائج. وبشكل أكثر تحديدًا، نستخدم تكلفة التوليد بدلاً من السعة المركبة كأحد الأهداف ؛ وننظر في العلاقة بين الطلب وملفات تعريف التوليد ؛ ونحد من مخاطر النقص من خلال تضمين مقياس CVaR. يتم تقديم هذه التعديلات في نموذج رسمي يتم تطبيقه أيضًا على حالة البرازيل. وجدنا أنه بعد تضمين تعديلاتنا المقترحة، تختلف الحدود الفعالة الناتجة اختلافًا كبيرًا عن تلك التي تم الحصول عليها في الصيغة الأصلية. والفرق الرئيسي هو أن الحدود الفعالة الجديدة لديها نطاق أقصر بكثير من قيم الانحراف المعياري المقبولة. لذلك، فإن العديد من المحافظ التي تم الحصول عليها من التركيبة التقليدية لديها احتمال أعلى بكثير لنقص الإنتاج، وخاصة المحافظ الموجودة في المناطق ذات الانحراف المعياري إما منخفض جدًا أو مرتفع جدًا. علاوة على ذلك، نظهر أن التنويع يلعب دورًا مهمًا في تسهيل الإنتاج من محافظ المصادر المتجددة المتغيرة.

Keywords

Renewable energy, Economics, Social Sciences, Application of Real Options in Investment Strategies, Electric power system, Engineering, Context (archaeology), Range (aeronautics), Electricity, Business, Variable (mathematics), Marketing, Diversification (marketing strategy), Physics, Mathematical optimization, Statistics, Electricity Market Operation and Optimization, Power (physics), Economics, Econometrics and Finance, Aerospace engineering, Variable renewable energy, Physical Sciences, Financial economics, Expected shortfall, Mathematical analysis, Quantum mechanics, FOS: Economics and business, Economics - Theoretical Economics, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Standard deviation, Econometrics, Electrical and Electronic Engineering, CVAR, Biology, Modern portfolio theory, Energy Modeling, Efficient frontier, Integration of Renewable Energy Systems in Power Grids, Portfolio optimization, Paleontology, Limit (mathematics), Computer science, Electrical engineering, Theoretical Economics (econ.TH), Optimization, Diversification, Portfolio selection, Renewable energy sources, CVaR., Portfolio, Finance, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 1
  • 3
    views
    1
    downloads
    Data sourceViewsDownloads
    ZENODO31
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
3
1
Green
hybrid