
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries
The Lower Silurian Longmaxi Formation is an organic-rich (black) mudrock that is widely considered to be a potential shale gas reservoir in the southern Sichuan Basin (the Yangtze plate) in Southwest China. A case study is presented to characterise the shale gas reservoir using a workflow to evaluate its characteristics. A typical characterisation of a gas shale reservoir was determined using basset sample analysis (geochemical, petrographical, mineralogical, and petrophysical) through a series of tests. The results show that the Lower Silurian Longmaxi Formation shale reservoir is characterised by organic geochemistry and mineralogical, petrophysical and gas adsorption. Analysis of the data demonstrates that the reservoir properties of the rock in this region are rich and that the bottom group of the Longmaxi Formation has the greatest potential for gas production due to higher thermal maturity, total organic carbon (TOC) enrichment, better porosity and improved fracture potential. These results will provide a basis for further evaluation of the hydrocarbon potential of the Longmaxi Formation shale in the Sichuan Basin and for identifying areas with exploration potential.
- University of Geneva Switzerland
- Utrecht University Netherlands
- United Nations Industrial Development Organization Austria
- United Nations Industrial Development Organization Austria
Industrial energy efficiency, Benchmarking, Energy indicators, Best practice technology
Industrial energy efficiency, Benchmarking, Energy indicators, Best practice technology
