
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficiency of a new Triangle Cycle with flash evaporation in a piston engine

Abstract A Triangle Cycle with a piston engine expansion unit is used to convert low temperature heat into electrical energy. In this process, the isentropic efficiency of the expansion unit is considered to be unknown, and a theoretical approach for the calculation of isentropic efficiency is presented. A number of influences are taken into account – dead volume, residual mass, liquid injection performance and wall heat transfer. Various working fluids are investigated in a wide range of temperatures (333K–573K), engine speeds (5 Hz–30 Hz) and stroke volumes (0.1 L–50 L). The isentropic efficiency of water as working fluid is in the range of 0.75–0.88 and drops significantly for high stroke volumes and engine speeds. In general, injection mass has the most impact on isentropic efficiency because it influences dead volume and injection performance. The injection mass increases with vapor density and therefore is significantly influenced by working fluid and temperatures. The Triangle Cycle is compared with Organic Rankine Cycles by using determined isentropic efficiency. The exergetic efficiency of the Triangle Cycle using water is up to 35–70% higher than that of supercritical Organic Rankine Cycles in situations with a heat source temperature of up to 450K.
- European Institute United States
- European Institute United States
- Karlsruhe Institute of Technology Germany
- European Institute for Energy Research Germany
Technology, ddc:600, info:eu-repo/classification/ddc/600, 600
Technology, ddc:600, info:eu-repo/classification/ddc/600, 600
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
