
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction

Abstract In this paper, WESN (wavelet echo state network) with a novel ESN-based reconstruction stage is applied to both STLF (short-term load forecasting) and STTF (short-term temperature forecasting). Wavelet transform is used as the front stage for multi-resolution decomposition of load or temperature time series. ESNs function as forecasters for decomposed components. A modified shuffled frog leaping algorithm is used for optimizing ESNs. Both one-hour and 24-h ahead predictions are studied where the number of inputs are kept minimum. The performance of the proposed WESN-based load forecasters are investigated for three cases as the predicted temperature input is fed by actual temperatures, output of the WESN-based temperature forecasters and noisy temperatures. Effects of temperature errors on load forecasts are studied locally by sensitivity analysis. Hourly loads and temperatures of a North-American electric utility are used for this study. First, results of the proposed forecasters are compared with those of ESN-based forecasters that have previously shown high capability as stand-alone forecasters. Next, the WESN-based forecasters are compared with other models either previously tested on the data used here or to be rebuilt for testing on these data. Comparisons reveal significant improvements on accuracy of both STLF and STTF using the proposed forecasters.
- Bu-Ali Sina University Iran (Islamic Republic of)
- Bu-Ali Sina University Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
