
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode

Thermochemical storage with moist air is a promising way to achieve seasonal storage of solar heat. This paper investigates the link between outlet and inlet airflow conditions in the case of hydration/dehydration of thermochemical processes operating with moist air at atmospheric pressure. A thermodynamic analysis of a solid/gas reactor operating in open mode is performed. That leads to a thermodynamic relation called charge–discharge operating line. Experimental tests have been carried out with two different reactive salts in order to prove the validity of the charge–discharge operating line. Experimental results provide a close match between the theoretical approach of the charge–discharge operating line and the measurements. Based on this relation, a reactor performance criterion, called reaction effectiveness, is defined. Both operating line and effectiveness stand as efficient design tools to predict performances of the reactor and to guide R&D choices to enhance them.
660, [SPI] Engineering Sciences [physics], Thermochemical energy storage, Open mode, 620, [SPI]Engineering Sciences [physics], [ SPI ] Engineering Sciences [physics], Solid/gas reactor, Thermodynamics, Psychrometrics
660, [SPI] Engineering Sciences [physics], Thermochemical energy storage, Open mode, 620, [SPI]Engineering Sciences [physics], [ SPI ] Engineering Sciences [physics], Solid/gas reactor, Thermodynamics, Psychrometrics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
